漫画:什么是冒泡排序?

  大家一定都喝过汽水,汽水中常常有许多小小的气泡,哗啦哗啦飘到上面来。这是因为组成小气泡的二氧化碳比水要轻,所以小气泡可以一点一点向上浮动。

  而我们的冒泡排序之所以叫做冒泡排序,正是因为这种排序算法的每一个元素都可以像小气泡一样,根据自身大小,一点一点向着数组的一侧移动。

  有8个数组成一个无序数列:5,8,6,3,9,2,1,7,希望从小到大排序。

  按照冒泡排序的思想,我们要把相邻的元素两两比较,根据大小来交换元素的位置,过程如下:

  这样一来,元素9作为数列的最大元素,就像是汽水里的小气泡一样漂啊漂,漂到了最右侧。

  这时候,我们的冒泡排序的第一轮结束了。数列最右侧的元素9可以认为是一个有序区域,有序区域目前只有一个元素。

  原始的冒泡排序是稳定排序。由于该排序算法的每一轮要遍历所有元素,轮转的次数和元素数量相当,所以时间复杂度是O(N^2) 。

  代码非常简单,使用双循环来进行排序。外部循环控制所有的回合,内部循环代表每一轮的冒泡处理,先进行元素比较,再进行元素交换。

  让我们回顾一下刚才描述的排序细节,仍然以5,8,6,3,9,2,1,7这个数列为例,当排序算法分别执行到第六、第七、第八轮的时候,数列状态如下:

  很明显可以看出,自从经过第六轮排序,整个数列已然是有序的了。可是我们的排序算法仍然“兢兢业业”地继续执行第七轮、第八轮。

  这种情况下,如果我们能判断出数列已经有序,并且做出标记,剩下的几轮排序就可以不必执行,提早结束工作。

  这个数列的特点是前半部分(3,4,2,1)无序,后半部分(5,6,7,8)升序,并且后半部分的元素已经是数列最大值。

  按照现有的逻辑,有序区的长度和排序的轮数是相等的。比如第一轮排序过后的有序区长度是1,第二轮排序过后的有序区长度是2 ......

  实际上,数列真正的有序区可能会大于这个长度,比如例子中仅仅第二轮,后面5个元素实际都已经属于有序区。因此后面的许多次元素比较是没有意义的。

  如何避免这种情况呢?我们可以在每一轮排序的最后,记录下最后一次元素交换的位置,那个位置也就是无序数列的边界,再往后就是有序区了。

  这一版代码中,sortBorder就是无序数列的边界。每一轮排序过程中,sortBorder之后的元素就完全不需要比较了,肯定是有序的。

TAG标签: 冒泡排序算法
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。